Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia

نویسندگان

  • Nathan R. Bartholomew
  • Jacob M. Burdett
  • John M. VandenBrooks
  • Michael C. Quinlan
  • Gerald B. Call
چکیده

Laboratories that study Drosophila melanogaster or other insects commonly use carbon dioxide (CO2) anaesthesia for sorting or other work. Unfortunately, the use of CO2 has potential unwanted physiological effects, including altered respiratory and muscle physiology, which impact motor function behaviours. The effects of CO2 at different levels and exposure times were examined on the subsequent recovery of motor function as assessed by climbing and flight assays. With as little as a five minute exposure to 100% CO2, D. melanogaster exhibited climbing deficits up to 24 hours after exposure. Any exposure length over five minutes produced climbing deficits that lasted for days. Flight behaviour was also impaired following CO2 exposure. Overall, there was a positive correlation between CO2 exposure length and recovery time for both behaviours. Furthermore, exposure to as little as 65% CO2 affected the motor capability of D. melanogaster. These negative effects are due to both a CO2-specific mechanism and an anoxic effect. These results indicate a heretofore unconsidered impact of CO2 anaesthesia on subsequent behavioural tests revealing the importance of monitoring and accounting for CO2 exposure when performing physiological or behavioural studies in insects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The significance of spiracle conductance and spatial arrangement for flight muscle function and aerodynamic performance in flying Drosophila.

During elevated locomotor activity such as flight, Drosophila satisfies its increased respiratory demands by increasing the total spiracle opening area of the tracheal gas exchange system. It has been assumed that in a diffusion-based system, each spiracle contributes to oxygen flux into and carbon dioxide flux out of the tracheal system according to the size of its opening. We evaluated this h...

متن کامل

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)

Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...

متن کامل

Drosophila Tracks Carbon Dioxide in Flight

Carbon dioxide (CO(2)) elicits an attractive host-seeking response from mosquitos yet is innately aversive to Drosophila melanogaster despite being a plentiful byproduct of attractive fermenting food sources. Prior studies used walking flies exclusively, yet adults track distant food sources on the wing. Here we show that a fly tethered within a magnetic field allowing free rotation about the y...

متن کامل

Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae)

Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015